Exercise 42

The force exerted by an electric charge at the origin on a charged particle at a point (x, y, z) with position vector $\mathbf{r}=\langle x, y, z\rangle$ is $\mathbf{F}(\mathbf{r})=K \mathbf{r} /|\mathbf{r}|^{3}$ where K is a constant. (See Example 16.1.5.) Find the work done as the particle moves along a straight line from $(2,0,0)$ to $(2,1,5)$.

Solution

Parameterize the path that the particle moves on by $x=2, y=t, z=5 t$ so that

$$
\mathbf{r}(t)=\langle 2, t, 5 t\rangle, \quad 0 \leq t \leq 1
$$

Calculate the line integral of the force field over the linear path to find the work done.

$$
\begin{aligned}
W & =\int_{C} \mathbf{F} \cdot d \mathbf{r} \\
& =\int_{0}^{1} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}^{\prime}(t) d t \\
& =\int_{0}^{1} K \frac{\mathbf{r}(t)}{|\mathbf{r}(t)|^{3}} \cdot \mathbf{r}^{\prime}(t) d t \\
& =K \int_{0}^{1} \frac{\langle 2, t, 5 t\rangle}{\left[\sqrt{2^{2}+t^{2}+(5 t)^{2}}\right]^{3}} \cdot\langle 0,1,5\rangle d t \\
& =K \int_{0}^{1} \frac{(2)(0)+(t)(1)+(5 t)(5)}{\left(\sqrt{4+26 t^{2}}\right)^{3}} d t \\
& =K \int_{0}^{1} \frac{26 t}{\left(4+26 t^{2}\right)^{3 / 2}} d t
\end{aligned}
$$

Make the following substitution.

$$
\begin{aligned}
u & =4+26 t^{2} \\
d u & =52 t d t \quad \rightarrow \quad \frac{d u}{2}=26 t d t
\end{aligned}
$$

Consequently,

$$
\begin{aligned}
W & =K \int_{4+26(0)^{2}}^{4+26(1)^{2}} \frac{1}{u^{3 / 2}}\left(\frac{d u}{2}\right) \\
& =\frac{K}{2} \int_{4}^{30} u^{-3 / 2} d u \\
& =\left.\frac{K}{2}\left(-2 u^{-1 / 2}\right)\right|_{4} ^{30} \\
& =K\left(\frac{1}{2}-\frac{1}{\sqrt{30}}\right) .
\end{aligned}
$$

